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Abstract

Background Community-engaged research (CER) leverages knowledge, insights, and expertise of researchers

and communities to address complex public health challenges and improve community well-being. CER fosters col-
laboration throughout all research phases, from problem identification and implementation to evaluation. Artificial
Intelligence (Al) could enhance the collaborative process by improving data collection, analysis, insight, and engage-
ment, while preserving research ethics. By integrating Al into CER, researchers could enhance their capacity to work
collaboratively with communities, making research more efficient, inclusive, and impactful. However, careful consider-
ation must be given to the ethical and social implications of Al to ensure that it supports the goals of CER. This paper
introduces the PRISM-Capabilities model for Al to promote a human-centered approach that emphasizes collabora-
tion, transparency, and inclusivity when using Al within CER.

Methods The PRISM-Capabilities model for Al includes six components to ensure that ethical concerns are
addressed, trust and transparency are maintained, and communities are equipped to use and understand Al technol-
ogy. This conceptual model is specifically tailored for community-engaged implementation science research, facilitat-
ing close collaboration between researchers and community partners to guide the use of Al throughout. This paper
also proposes next steps to validate the model using the HEALing Communities Study (HCS), the largest community-
engaged research study to date, which aimed to reduce fatal overdose deaths in 67 highly impacted communities

in the United States.

Case study The PRISM-Capabilities model consists of six components: Optimizing engagement of implementers,
settings, and recipients; characteristics of intervention implementers, settings, and recipients; equity assessment
and risk management; implementation and sustainability infrastructure; external environment; and ethical assessment

*Correspondence:

Nabila El-Bassel

ne5@columbia.edu

Full list of author information is available at the end of the article

©The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13012-025-01447-2&domain=pdf
http://orcid.org/0000-0002-0049-5686

El-Bassel et al. Implementation Science (2025) 20:37

Page 2 of 17

and evaluation. Although Al was not initially used during the HCS, we highlight how Al will be leveraged to complete
post-hoc analyses of each of the six components and validate the PRISM-Capabilities model.

Conclusion The application of Al to CER relies on human-centered principles that prioritize human-Al collaboration,
allowing for the operationalization of responsible Al practices. The PRISM-Capabilities model provides a framework
to account for the complexities of real-world social science problems and explicitly positions Al tools at bottlenecks

experienced with conventional approaches.

Keywords Al, Community-engaged, Framework, Methodology, Ethics, Opioid

Contributions to the literature (96/100)
+ Highlights how AI could strengthen community-
engaged implementation science research by improv-
ing data processes and engagement, while maintaining
a collaborative and ethical approach.

oIntroduces the PRISM-Capabilities model for
Al which emphasizes practical, ethical, and socially
responsible research.

«Provides a plan and checklist for ethically driven Al
in community implementation research.

+The model offers a potential tool to guide the use
of Al in future implementation science studies and
validates the model using the HEALing Communities
Study (HCS), to provide robust real-world context,
strengthening the model’s applicability and relevance
in addressing public health issues through implemen-
tation science research.

Introduction

Artificial intelligence (Al) is transforming social science
research by enabling large-scale data analysis, simulation
of complex systems, and new understanding of human
behavior [1]. Initially limited to automating data pro-
cesses [1], Al has since advanced social science by sup-
porting sentiment analysis, predictive modeling, and
pattern recognition [2, 3], thereby expanding the reach,
precision and power of research [4]. Early AI applica-
tions in social science were often top-down, relying on
existing datasets and excluding community perspectives,
which led to algorithmic bias and lack of cultural nuance
[5-7]. In response, social science researchers have
adopted participatory approaches in Al that prioritize
community co-design, transparency, and ethical over-
sight [1, 8, 9]. Parthasarathy and Katzman (2024) empha-
size that integrating marginalized communities into Al
design not only improves equity but aligns with grass-
roots knowledge to address the needs of the community
[6]. Tools like model auditing and feedback loops now
bring stakeholders to identify and correct Al bias during
the research development phase [10]. This participatory
shift is visible in fields like healthcare and implementa-
tion science, where stakeholders shape the use of Al in

diagnostic technology tools [11-14]. For instance, in dia-
betes research, predictive models have been developed
through community input to include variables like food
insecurity and transportation [15]. In substance use and
mental health studies, natural language processing (NLP)
tools co-created with communities have helped identify
stigma and tailor interventions for different cultural con-
texts [8, 16]. Achieving equitable, contextual and com-
munity-driven use of Al, however, requires community
engagement frameworks. This includes building shared
language, decision-making frameworks, and design pro-
cesses that bridge data science, implementation science,
and lived experiences.

Ultimately, AI’s role is not to automate decision-mak-
ing but to augment human input and judgment, thereby
enhancing adaptability, reducing implementation fatigue,
and supporting ethical and sustainable community-
engaged research (CER). By centering human-Al part-
nerships and prioritizing transparency, researchers could
ensure that Al supports outcomes that are culturally and
contextually responsive. The literature underscores the
considerable potential of AI to enhance CER [15, 17], but
also highlights a significant gap in conceptual models to
guide the ethical application of Al [18]. This raises the
need for a conceptual model that emphasizes a human-
centered approach to Al use which minimizes bias in
each step of CER [19]. In this paper, we introduce the
PRISM-Capabilities model for Al as a conceptual model
to guide the integration of Al and CER that is grounded
in local knowledge and expertise.

Methods

An integrated conceptual model to guide the use of Al

in community-engaged implementation science research:
the PRISM-Capabilities Model for Al

The PRISM-Capabilities model for Al integrates the
Practical, Robust Implementation and Sustainability
Model (PRISM) [20] with the Capabilities Approach [21,
22] (Fig. 1). When combined, this model addresses his-
torical shortcomings of Al in social science and CER by
promoting ethical, human-centered collaboration. This
ensures that research aligns with the values, morals, and



El-Bassel et al. Implementation Science (2025) 20:37

Page 3 of 17

CHARACTERISTICS

SETTIN

OF IMPLEME(%TERS,
RECIPIEN

3

S

Adapt interventions to

OPTIMIZING
ENGAGEMENT

Ensure early, inclusive co-
1 definition of research

> 1'1] N

PRISM-
Capabilities
HIC Model for Al

organizational readiness and
local context; enable real-
time adjustments

QUITY ASSESSME
& RISK MANAGEMENT

Monitor disparities in
implementation and
outcomes; ensure real-
time faimess auditing

NTA
JSTAINABILITY

EXTERNAL ol ol s ok

ENVIRONMENT

Anticipate how policy,
organizational, or regulatory
shifts influence community-
engaged research success

Fig. 1 This figure illustrates the six interconnected and mutually reinforcing components of the PRISM-Capabilities model for Al, as applied

to community-engaged research (CER)

needs of the communities being served, so that Al is a
complement, rather than a replacement to human efforts.
This approach also fosters participatory processes, shared
learning, co-design, and co-ownership to ensure that Al-
enabled CER is guided by community voice and lived
experiences [23-25].

PRISM is an implementation science framework for
designing, delivering, and evaluating interventions [26],
that incorporates the RE-AIM (Reach, Effectiveness,
Adoption, Implementation, Maintenance) conceptual
model [20]. We selected the PRISM framework because
it explicitly incorporates organizational characteristics
(e.g., culture, leadership), external environments (e.g.,
policy, funding) and perspectives of multiple stakeholders
(patients, providers, administrators, funders), making it
particularly well-suited for complex, real-world settings,
and practical for implementation in diverse environ-
ments and at various levels (local community, nationally).
In addition to implementation outcomes, PRISM focuses

on sustainability and continuous feedback loops to sup-
port long-term change and ongoing improvement, which
other implementation science frameworks may overlook.
The domains of PRISM directly correspond to the types
of data and decision points where Al methods (such as
NLP, fairness audits, and simulation modeling) excel by
enabling continuous learning, multilevel monitoring, and
rapid feedback. PRISM allows for a holistic assessment of
implementation efforts, including both process and out-
come measures across multiple levels (patient, provider,
organization, system) [20, 26]. The PRISM-Capabilities
model for Al emphasizes iterative feedback and sys-
tems thinking, [29, 30] making PRISM the most suitable
implementation science framework for use with Al tools.
Moreover, PRISM guided the HEALing communities
Study [31], which will be used to illustrate the PRISM-
Capabilities model for Al in this paper.

The Capabilities Approach focuses on the free-
doms and conditions that enable individuals and
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communities to achieve their goals [21, 27, 28]. When
applied to CER, the Capabilities Approach emphasizes
ethical imperatives rooted in autonomy and human
dignity [32], which are critical when AI influences
decisions and outcomes. It underscores the need to
ground Al in local realities and ensure that individuals
have a hand in shaping the data and insights that affect
their communities [22, 28]. It also enhances transpar-
ency and accountability by embedding community
voices in every phase of Al development and use [33].
This"bottom-up"approach elevates community con-
tributions through shared ownership and local knowl-
edge [34]. The PRISM-Capabilities model thus ensures
that Al solutions are culturally relevant and tailored to
community priorities, fostering equitable and effective
outcomes.

As a non-linear model, PRISM-Capabilities supports
iterative feedback aligned with human-centered design
(HCD), where rapid cycles of human-AI collaboration
refine implementation in real time. By incorporating sys-
tems thinking [35, 36], the model addresses the intercon-
nected influences that shape CER outcomes. Co-creation
and shared goals, such as clarifying the benefits of Al use,
addressing bias, and transparency are central to this pro-
cess. Ultimately, the model positions community mem-
bers as co-designers, co-analysts, and co-stewards of
Al-enabled CER.
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This paper first presents an overview of the PRISM-
Capabilities model for AI (Fig. 1). Next, this paper uses
the HEALing Communities Study (HCS), the largest
implementation science study ever funded to address
substance use [31], as a retrospective use case to demon-
strate the PRISM-Capabilities model. Although Al was
not widely available during the implementation phase of
HCS, it could have enhanced the CER process. This paper
strengthens the empirical foundation of the PRISM-
Capabilities model for AI by describing post-hoc analy-
ses that will be completed to simulate the real-time utility
of Al during HCS implementation to fully capitalize on
the extensive dataset generated by the HCS, while also
presenting limitations. Finally, we describe the poten-
tial technical limitations of Al such as hallucinations,
explainability challenges, automation risks and algorith-
mic bias, which could undermine ethical CER implemen-
tation, while also proposing safeguards.

The interconnected components of the PRISM-Capabilities
model for human-Al collaboration in CER

By delineating the model’s six components (Table 1), we
offer a practical blueprint for translating the conceptual
model into action. The model supports real-world appli-
cation by detailing specific data types and analytic tech-
niques (e.g., NLDP, fairness audits, simulation modeling),
promoting transparent human-Al collaboration, and

Table 1 PRISM-capabilities model components for human-Al collaboration in community-engaged research

Purpose

Example Al Tools & Methods

Example Implementation Questions

Optimizing Engagement

Ensure early, inclusive co-definition of research
problems with stakeholders; identify engage-
ment gaps and community priorities

Characteristics of Implementers, Settings,
Recipients

Adapt interventions to organizational readiness
and local context; enable real-time adjustments

Equity Assessment & Risk Management
Monitor disparities in implementation and out-
comes; ensure real-time fairness auditing

audits); dashboards

Implementation & Sustainability Infrastruc-
ture

Support long-term planning, assess fidelity,
and optimize resources

External Environment

Anticipate how policy, organizational, or regula-
tory shifts influence CER success

geospatial mapping

Ethical Assessment & Evaluation

Build procedural justice, transparency,

and accountability into all Al-supported activi-
ties

audit tools

NLP (sentiment analysis, topic modeling); ML
for engagement forecasting

NLP (readiness signals); ML (site clustering);
SHAP, LIME for transparency

NLP (bias detection); ML (risk prediction, fairness

Simulation (system dynamics, agent-based); NLP
(session analysis); ML (forecasting)

NLP (policy analysis); ML (trend detection);

NLP (ethical flagging); SHAP, LIME; participatory

Who are key partners? What engagement gaps
exist? What early barriers can Al detect?

What's the organizational context? How do inter-
ventions align with site-specific needs?

Are disparities emerging? How do Al tools support
equitable resource allocation?

What resources are needed long-term? How can
drift in intervention fidelity be detected early?

How do structural factors support or limit imple-
mentation? What external threats exist?

Are Al decisions explainable? How are community
values integrated?
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surfacing key questions for participatory co-design. The
guide is tailored to help research teams, Al experts, and
community partners use Al in ways that enhance trust,
contextual responsiveness, and ethical accountability
throughout all phases of CER implementation.

Optimizing engagement of implementers, settings,

and recipients

The PRISM-Capabilities model for Al begins with gather-
ing data from key implementers, organizational leaders,
community members, individuals with lived experience,
and policymakers to identify challenges and priorities to
improve intervention acceptability. Community engage-
ment at this stage aims to co-define the research
question, identify barriers, and ensure that diverse stake-
holder voices are included from the outset of CER imple-
mentation. Human-AI collaboration in this phase could
generate real-time insights using NLP, sentiment analysis
and other Al tools when drawing from qualitative data
to support more inclusive and effective implementation.
Topic modeling could also be applied to meeting tran-
scripts to identify recurring themes in engagement and
trust, helping to tailor implementation strategies to local
needs.

Al tools could help answer questions like: Are there
emotional tone, morale, or participation gaps across stake-
holder groups? Who are the key community partners?
(identified via NLP in meeting transcripts)? What is the
state of organizational infrastructure (assessed through
partner feedback and documents)? How is the intervention
perceived (measured through sentiment analysis)? What
prior experiences shape implementer perspectives? What
external factors, policy, funding, or local support might
be barriers to implementation? What skills and training
gaps exist among implementers (identified through perfor-
mance records)? When answering such questions, topic
modeling could uncover recurring themes to enhance an
understanding of implementation challenges. Addition-
ally, ML methods could support responsive and equi-
table decision-making by synthesizing diverse datasets
such as demographic trends, local health outcomes, and
economic indicators to construct a dynamic, data-driven
model of the implementation context.

Characteristics of implementers, settings, and recipients

This component considers the skills, capacities, readi-
ness, and contextual factors of the individuals and
systems involved in CER implementation to ensure align-
ment with local needs, contexts and available resources.
This is achieved by incorporating feedback from all
stakeholders early in the CER process and enabling con-
tinuous refinement of core components and implementa-
tion strategies. To ensure contextual fit, all stakeholders
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must assess whether interventions align with commu-
nity needs, values, and available resources. SDM could
be used to visualize variations across sites using NLP to
enhance the process of understanding site-level differ-
ences in organizational readiness and capacity. SDM data
sources may include in-depth interviews, focus group
discussions, administrative records, and surveys. Real-
time sentiment analysis could support timely adjust-
ments by addressing questions like: How are participants
responding to the intervention? Or What changes could
increase impact?

Importantly, readiness indicators and other features
used in AI models should be co-developed with com-
munity input. Tools like SHapley Additive exPlanations
(SHAP) or Local Interpretable Model-agnostic Explana-
tions (LIME) could help make AI outputs interpretable
and actionable [37]. By quantifying how much each fea-
ture contributes to an individual prediction, SHAP and
LIME enable transparent, consistent, and locally accurate
explanations of complex ML models and could be used
for auditing Al models, identifying bias, or building trust
with stakeholders. Al models could also automate routine
tasks and improve decision-making, and engagement.

Equity assessment and risk management

The next component identifies potential disparities in
implementation and outcomes and ensures inclusive
access to benefits across diverse populations. When used
in CER, Al could enhance and ensure equity assessment
and risk management by continuously analyzing perfor-
mance data, detecting trends in real time and supporting
equitable intervention distribution [38, 39]. These tools
could uncover disparities in participation, access and
outcomes, particularly when implemented in collabora-
tion with communities.

NLP methods, including supervised classification and
unsupervised clustering, analyze meeting transcripts,
interviews, and narratives to detect linguistic biases,
exclusionary framing, and disparities in how underrep-
resented groups are being discussed by various stake-
holders. These analyses could help identify patterns of
disparities and disproportionate burden, prompting
timely adaptations. Al could also integrate demographic
and other contextual data to guide equitable resource
allocation and performance using indicators such as race,
income, geography, or criminal-legal system involvement
[40]. AT dashboards and fairness audits that are stratified
by these variables could be used to visualize emerging
inequities and track subgroup disparities to shape inclu-
sive and effective interventions [40, 41].

Ultimately, equity assessment in this model is not
just about data accuracy, but also about participatory
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oversight and actionable insights that reduce harm for
all populations. To ensure equity metrics are transpar-
ent, accountable and meaningful, communities must co-
define risks by selecting which disparities to track, how
to interpret subgroup errors, validate algorithmic out-
puts, and what thresholds warrant action. Fairness-aware
modeling (e.g., demographic parity checks and disparate
impact audits) must be implemented as a continuous
auditing mechanism that is governed collaboratively and
continuously, rather than as a one-time evaluation. This
transforms equity assessments into a dynamic, corrective
mechanism that moves beyond static disparity reporting
to enable actionable, real-time mitigation. Furthermore,
researchers could develop Al-driven dashboards to allow
for transparency and data-informed outputs to enable
CER implementation teams to respond quickly.

Implementation and sustainability infrastructure

The PRISM-Capabilities model for AI highlights the
importance of contextual factors in building and sustain-
ing implementation systems [27, 42]. This component
of the model evaluates organizational systems, resource
flows, training, and operational supports to ensure effec-
tive intervention delivery and sustainability. It provides
a framework for optimizing workflows, training, and
resource planning through simulation and forecasting
tools that incorporate diverse stakeholder inputs [43].

Al tools such as ML models, agent-based modeling
(ABM) and system dynamics modeling (SDM) could
be used with community input to simulate or estimate
needs such as resources, staffing, fidelity, or commu-
nity engagement necessary for achieving the desired
outcomes [44, 45]. This allows for informed decision-
making, intervention planning [46], and maintenance of
standards throughout the implementation process [19].
Al tools could also support implementation fidelity and
sustainability by analyzing multiple data sources includ-
ing meeting transcripts, session recordings, and techni-
cal assistance (TA) logs detailing the type of support
offered, frequency of interactions, and specific imple-
mentation challenges addressed to assess intervention
fidelity and community responsiveness to the interven-
tion. For example, NLP could identify procedural drift or
flag low engagement by analyzing language use, while ML
could integrate fidelity reports with demographic data
to detect where implementation may falter [22]. Impor-
tantly, researchers and community members should co-
specify thresholds for acceptability to enable Al models
to reflect shared expectations around fidelity and perfor-
mance and empirically test these thresholds and the cor-
responding responses. This iterative testing is critical to
developing data-informed decision rules when observed
variables change in a community; and determine the type
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of response that is warranted and appropriate thresholds.
Applying this strategy in studies like the HCS would allow
communities and researchers to calibrate actions based
on evidence, strengthen planning, training, and mid-
course corrections through Al-informed learning cycles.
Moreover, Al tools could detect early warning signs of
resource strain (e.g., reduced meeting participation or
burnout indicators) and simulate future implementation
needs under various scenarios to support sustainability
planning. ABM and SDM could test how variations in
coalition leadership, staffing, or funding affect implemen-
tation success over time [19], and Al-driven forecasting
tools ensure local relevance and accuracy, when devel-
oped with stakeholder input.

External environment

The PRISM-Capabilities model for Al incorporates how
external factors such as policies, regulations, community
assets and broader socio-political factors shape the suc-
cess and sustainability of CER [20, 27]. PRISM focuses on
how systemic structures (e.g., laws, reimbursement sys-
tems, resource availability) affect intervention delivery
and sustainability, while the Capabilities Approach exam-
ines how those same forces constrain or enable individu-
als’ abilities to achieve desired outcomes. Together, they
provide a complementary lens to assess how broader
conditions impact equity and feasibility in CER. Al
tools could enhance this by processing large volumes of
unstructured and structured data. NLP could be used to
analyze policy documents, clinical guidelines, legislative
records, and media content to extract relevant shifts in
regulation, reimbursement, or political sentiment that
may affect intervention implementation. Geospatial
mapping could help identify gaps in local infrastructure
(e.g., healthcare or educational facilities), while image-
recognition tools could assess geographic disparities in
service delivery [47, 48]. However, all Al-generated inter-
pretations of policy or resource data should be validated
through community and expert review, particularly in
contexts with contested or historically exclusionary poli-
cies. Ultimately, the value of Al lies not only in moni-
toring regulatory, political or economic shifts, but in
ensuring such insights are interpreted collaboratively and
used to design ethically and practically grounded inter-
ventions that address real-world problems.

Ethical assessment and evaluation

Researchers conducting CER must prioritize ethical Al
use across all six components of the PRISM-Capabilities
model to ensure inclusivity, equity, safety, data privacy,
and accountability across all phases of CER. In this area,
NLP could analyze large volumes of feedback (e.g., out-
come data, meeting transcripts, social media sentiment
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Checklist item

Example Questions

Safeguarding data confidentiality
Compliance with regulations and policies

Promoting equity and fairness by including diverse communities and consid-
ering their unique characteristics

Maintaining data integrity to ensure accuracy and reliability
Adopting and implementing privacy protocols for transparent data use

Implementing robust data security measures
Ensuring transparency in Al processes and outcomes

Building trust and confidence by aligning Al applications with community
expectations

What cybersecurity measures are in place to safeguard data?
Has IRB approval for the study been granted?

Are members of the community included on the research team?
Is equity included in the research goals?

Are the proper measures in place to ensure data is properly handled?

What privacy protocols have been developed to protect data and con-
fidentiality?

How is data being stored and handled?
What dissemination practices will the research group use throughout?
How are the researchers ensuring community voices are heard?

etc.) to identify ethical concerns or outcomes that part-
ners, participants, and community members may miss
during human review. For instance, Al algorithms could
detect early-stage implementation biases such as unequal
access across sociodemographic groups and generate
ethical impact reports to guide decision-making.

While AI tools are powerful for synthesis, they must
not replace human judgment. Oversight is essential to
contextualize Al outputs, especially given the complexity
of behavior, cultural differences, and structural inequities
across communities. Including data from diverse data-
sets (e.g., policies, administrative data, meeting minutes)
enhances ethically grounded interpretations. In addition,
researchers should use clear, well-contextualized prompts
and integrate fact-checking to reduce hallucinations (i.e.,
inaccuracies that arise from overgeneralized or mis-
aligned patterns in the training dataset) in Al-generated
content [49, 50]. Though not eliminated entirely, halluci-
nations could be minimized through retrieval-augmented
generation (RAG), in which Al retrieves real information
from an external sources (meeting minutes, survey data,
focus group discussions, etc.) while generating its answer
[51, 52]. In this process, community members could be
actively involved when reviewing Al-generated outputs
for accuracy. Furthermore, Al tools must be deployed
alongside strong data protection measures. This includes
informed consent, clear explanation of AIs role, com-
pliance with ethical and legal standards (e.g., HIPAA,
GDPR), and enterprise-level safeguards like secure plat-
forms, encryption, role-based access, and audit logs.
Additional protections such as text and voice anonymi-
zation and differential privacy techniques are also crucial
when working with sensitive data. Researchers should
systematically evaluate the intended and unintended con-
sequences of Al-supported decisions as they evolve over
time, integrating this into real-time monitoring. Sociode-
mographic overlays should be used in conjunction with

feedback and outcome data to identify disparities that
may not be visible in raw performance metrics. Ethical
safeguards must include embedded de-identification pro-
tocols, differential privacy layers, and automated audit
trail systems within Al pipelines to ensure procedural
justice throughout the data lifecycle.

Explicit mechanisms should also be in place to uphold
transparency in Al decision-making, supported by real-
time explainability features. Algorithmic bias stemming
from data and representational imbalances is also a criti-
cal issue, and Al models trained on biased data may pro-
duce harmful outcomes. To mitigate this, researchers
must use diverse datasets, conduct fairness audits, and
implement interpretable models. Explainability tools
such as SHAP or LIME could help explain how a ML
model made a specific prediction, especially when the
model itself is complex and not directly interpretable
[37]. This could clarify how decisions are made and help
stakeholders verify their logic. Participatory Al-checking
ensures diverse voices, including researchers, imple-
menters, and people with lived experience are engaged
throughout CER. Finally, researchers should also support
the development of open-source explainability tools and
community-governed Al systems [53].

To ensure ethical and equitable CER, we propose that
all stakeholders involved in CER adopt an ethical check-
list guided by the six phases of the PRISM- Capabilities
model for AI (Table 2). This checklist helps establish a
foundation for ethical accountability, fosters trust, and
promoting responsible Al integration during CER.

Machine learning/Al tools considered

in the PRISM-capabilities model

Having outlined the six components of the PRISM-Capa-
bilities model, we now turn to the specific AI and ML
tools that enable real-world application. To move beyond
conceptual guidance, the following section (Table 3)
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operationalizes each of the six components with concrete
AI methods, typical data sources, strengths and limita-
tions, and human-AlI collaboration points. This mapping
is critical for researchers seeking to apply the model in
practice, particularly in studies like HCS [31].

NLP and sentiment analysis could rapidly synthesize
qualitative feedback, while ML models could predict pat-
terns and disparities, supporting equity and engagement
goals. Generative Al and topic modeling could acceler-
ate reporting and thematic analysis, but require human
oversight to maintain accuracy and contextual sensitivity.
Simulation and forecasting models could assist in sus-
tainability planning, while explainable AI (XAI) methods
and privacy-preserving technologies strengthen trans-
parency, ethical oversight, and data protection. Across
all applications, human-AI collaboration remains foun-
dational, ensuring Al complements rather than replaces
community knowledge and decision-making. This con-
crete synthesis moves beyond speculation to offer an
actionable, ethically grounded roadmap for Al integra-
tion into CER that is fully aligned with the PRISM-Capa-
bilities model for Al

Case Study: a practical application

of the PRISM-Capabilities model in the HEALing
Communities Study (HCS)

HCS was the largest implementation science research
effort to date to address fatal overdose deaths in the US.
Guided by the PRISM framework [20, 31, 54, 55], HCS
was a multisite, community-level, cluster-randomized con-
trolled trial designed to evaluate the effectiveness of the
Communities that HEAL (CTH) intervention in reducing
opioid-related overdose deaths in highly affected commu-
nities [56]. The trial was guided by the Reach, Effectiveness,
Adoption, Implementation, and Maintenance (RE-AIM)
framework and PRISM [20]. A total of 67 communities in
Kentucky, Massachusetts, New York, and Ohio were ran-
domly assigned to either the intervention arm (n=34 com-
munities) or the wait-list control arm (» =33 communities),
stratified by state. The study was approved by Advarra, an
independent research review organization, which served
as the single Institutional Review Board. Oversight was
provided by a Data and Safety Monitoring Board (DSMB)
chartered by the National Institute on Drug Abuse (NIDA)
[31, 56, 57].

The CTH intervention unfolded in six phases (Fig. 2),
emphasizing community engagement, evidence-based
practices (EBPs), and data-driven decision-making by com-
munity coalitions who were aided by visualizations made
available via community-specific data dashboards [58, 59].
EBPs included increased naloxone distribution, expanded
access to medications for opioid use disorder (MOUD),
improved MOUD linkage and retention, promotion of safer
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opioid prescribing and dispensing, and communication
campaigns to drive demand for EBPs and reduce stigma
toward MOUD and people who use drugs [60].

The HCS utilized a vast amount of data from multiple
sources (Table 4). To ensure fidelity to the CTH inter-
vention, researchers implemented rigorous monitoring
protocols, including monthly assessments of EBPs deliv-
ered in communities. In addition to qualitative data, HCS
collected extensive administrative and epidemiological
data.. Some study sites used advanced modeling tech-
niques to further refine predictive capabilities, such as
SDM to capture the interconnected nature of the opioid
crisis and intervention points to inform the deployment
of EBPs with community coalitions [61]. This approach
allowed for a more holistic view of the system-wide
impacts of implemented EBPs. The New York sites also
utilized ABM to simulate individual behaviors and inter-
actions within the community to predict how much EBPs
needed to increase to achieve the study outcomes [62].
The integration of these diverse data sources and analyti-
cal methods created a robust framework for evaluating
the effectiveness of the CTH intervention. By combining
qualitative insights, quantitative metrics, and advanced
modeling techniques, HCS was able to provide a compre-
hensive assessment of community-level efforts to imple-
ment EBPs and reduce opioid overdose deaths.

Potential empirical validation and scenarios

for retrospective and real-world applications

of the PRISM-capabilities model for Al using HCS

While the PRISM-Capabilities Model for Al was not used
during HCS implementation, we offer concrete opera-
tionalization of the six components through retrospec-
tive and real-time applications of Al Table 5 details how
Al tools could be used to retrospectively analyze existing
HCS data and simulates real-time utility in CER to vali-
date the model. Table 1 also maps the six model compo-
nents to corresponding Al tools and analytic objectives
(e.g., sentiment shifts, engagement trajectories, policy
simulations). Together, these tables illustrate the mod-
el's empirical utility and transition it from theoretical
abstraction to a data-driven implementation roadmap.

Retrospective and real-time validation using HCS data

To operationalize the PRISM-Capabilities model for Al
in dynamic, CER, we are conducting a multi-pronged,
post-hoc analysis using HCS data to evaluate the prac-
tical utility of the PRISM-Capabilities model for AI and
empirically test each of its six components. We describe
potential retrospective analyses and real-time Al tools
across all six components to enable responsive imple-
mentation, ethical oversight, and iterative adaptation in
CER below. Our aim is to assess whether state-of-the-art
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Communities
That HEAL
Intervention

Preparation

Establish a statewide
Community Advisory
Board (CAB)

Establish communi-
cation strategies

Getting Started

Establish a structure
for working with
HCS coalitions

Recruit champions
and introduce data-
driven decision-
making approach

Getting
Organized

Discuss ORCCA
menu options and
establish decision
procedure for
selecting EBP
strategies

Implement Year 1
communication
campaigns in

Community
Profiles
& Data
Dashboards

Create version 1.0 of
community profiles

Create version 1.0 of
data dashboards

Map the existing
services and
programs to ORCCA

Engage HCS
coalitions on data
visualizations

Co-create version 2.0
of the community
profiles

Co-create version

Community
Action
Planning

Develop ORCCA-
specific goals for the
community

Discuss and
prioritize EBP
strategies that align
with community
goals

Establish
community action
plans

Conduct qualitative
review of Year1
communication
campaigns in
partnership with
HCS coalitions

Develop the Seek
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Implement
& Monitor

Develop
implementation
plans for selected
EBP strategies

Implement ORCAA
EBP strategies

Troubleshoot and
provide technical
assistance

Plan, implement,
and monitor Seek
Treatment and

Stay in Treatment
campaign activities
in partnership with
the HCS coalitions

between CABs Train HCS coalitions  partnership with
and government HCS coalitions.
stakeholders Develop a

. distribution plan
Share information for Year1
with communities communication
about randomi- campaigns
zation

§ Introduce ORCCA

Identify and menu and evidence-
designate based practices
the HEALIng (EBPS)
Communities Study
(HCS) coalitions

Conduct landscape
analysis

Train research site
staff in community
engagement

Initiate preliminary
activities for
communication
campaigns

Hire and train local community
members to implement the

Sustalnablllty CTH intervention

Planning Train coalitions and other
stakeholders through learning
collaboratives

20 of the data Treatment and
dashboards Stay in Treatment
Conduct stakeholder er:g:alg:rlg?sess ik
trainings on

content and use

of community

profiles and data

dashboards

Continue data-driven decision
making and maintain data

dashboards Implement additional actions

and planning for sustainability
Identify and apply for long-
term funding for priority
project activities as needed

Fig. 2 The phased approach for implementation of the Communities that HEAL (CTH) intervention of the HCS to reduce fatal overdose (Martinez,
LS., et al, Community engagement to implement evidence-based practices in the HEALing communities study. Drug and alcohol dependence, 2020. 217:

p.108,326)

Al techniques can replicate the barriers, facilitators, and
outcomes observed during the original HCS implemen-
tation [69]. These analyses leverage both structured and
unstructured data, collected from 16 New York State
communities (Table 4).

Optimizing engagement

Retrospective

As described in Table 5, NLP methods such as BERTopic
and Latent Dirichlet Allocation (LDA) could be applied
to coalition transcripts and interviews to uncover evolv-
ing themes when engaging community service provid-
ers for the deployment of EPBs. Sentiment analysis tools
(e.g., Vader, TextBlob, RoBERTa-based models) can track
emotional tone related to stigma, optimism, and resist-
ance. Sequential pattern analysis could be used to map
the alignment between coalition goals and researcher

priorities, cross-referenced with fidelity data and TA logs
to assess community coalitions engagement trends. Fur-
thermore, sequential pattern analysis could be used to
understand the barriers and facilitators community ser-
vice providers and other stakeholders faced when identi-
fying and deploying EPBs.

Real-time

Transformer-based NLP models (e.g., RoBERTa) and
real-time topic modeling could monitor ongoing tran-
scripts, TA logs, and coalition involvement in the deploy-
ment of EBPs. These tools could be used to generate
sentiment dashboards, flag disengagement, track par-
ticipation equity, and detect signs of community fatigue.
Automated alerts could be used to support timely facili-
tation adjustments and re-engagement of underrepre-
sented stakeholders and coalitions members.
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Table 4 Sources of data used in the New York State site of the HCS
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Data Source

Objective

250+ coalition meeting transcripts and minutes

300+in-depth interviews
Focus groups data across 16 NY communities

Data on the number and type of EBPs (including stigma reduction)
Fidelity Measures

Opioid-overdose Reduction Continuum of Care Approach (ORCCA) Tracker
Asset Classification

Community Engagement

Training and Technical Assistance Tracker

Surveys

Costing

U.S. Census Bureau’s Single-Race Resident Population Estimates Data
and NCHS Bridged-Race Resident Population Estimates Data®

2014-2018 5-Year ACS Data”
New York State Department of Health Bureau of Vital Records®

New York State Hospital Inpatient Billing Claims and Emergency Depart-
ment Billing Claims Data

New York State Department of Health, Office of Health Insurance Pro-
grams, Medicaid Claims Data

New York State Prescription Drug Monitoring Program®

New York State Emergency Medical Services Runs Data
New York State Office of Drug User Health
Syndromic Surveillance Data

Drug Enforcement Administration Data

Captured deliberations on best strategies for EBP deployment as commu-
nities implemented the Communities That HEAL intervention

Coalition members, community partners, policymakers, PWUD, PWLE

Coalitions' perspectives on challenges related to the barriers to imple-
menting the deployment of evidence-based practices and on systems
work

Challenges and successes of EBP deployment, what communities
and populations reached

Attendee information, subcommittee checklist, coalition meeting informa-
tion and feedback

Tracks implementation evidence-based practices

Landscape analysis of participating communities

Meeting data, coalition meeting information, attendee survey
Tracks meetings used to educate key partners

Survey data related to criminal justice, HCS coalition members, HCS com-
munity advisory board members, toxicology, communications campaign

Community advisory board, communications campaign, staff activity,
miscellaneous activity costs

County-defined community population denominator, all ages

Zip code-defined community population denominator, all ages
Number of opioid overdose deaths among HCS community residents
Number of nonfatal drug poisoning hospitalizations and ED visits

Number of individuals with opioid dependence or abuse; number
of individuals receiving naltrexone; individuals with OUD receiving MOUD;
individuals with OUD receiving linkages to care

Number of individuals receiving buprenorphine products that are FDA
approved for treatment of OUD

Number of EMS events involving naloxone administration
Number of naloxone units distributed in community
Number of opioid-related overdoses treated in the ED
Number of providers with DATA 2000 waiver

2 Centers for Disease Control and Prevention, CDC Wonder. https://wonder.cdc.gov/single-race-population.html

b Centers for Disease Control and Prevention, CDC Wonder. https://wonder.cdc.gov/bridged-race-population.html

€NYS Department of Health, New York State County Opioid Quarterly Reports

9 NYS Department of Health, PMP/I-STOP - Prescription Monitoring Program- Internet System for Tracking Over-Prescribing

Characteristics of implementers, settings, and recipients
Retrospective

ML classifiers (e.g., Random Forests, XGBoost) could be
trained on structured data from readiness assessments,
staffing patterns, and coalition characteristics to predict
effective EBP implementation. Clustering algorithms
(e.g., k-means, DBSCAN) could be used to identify dis-
tinct community typologies that may benefit from tai-
lored implementation support.

Real-time

ML classifiers and NLP analytics could be applied to
readiness data, interviews, and implementation records
could be used to detect contextual misalignments (e.g.,
low local capacity, cultural misalignment). These tools
could be used to guide real-time adaptation by matching
interventions to community strengths, flagging imple-
mentation risks, and dynamically tailoring TA logs and
resource allocation.


https://wonder.cdc.gov/single-race-population.html
https://wonder.cdc.gov/bridged-race-population.html
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Equity assessment and risk management

Retrospective

NLP tools could be used to surface patterns of under-
representation, exclusionary language, and implicit bias
in coalition discourse. Fairness-aware ML algorithms
(e.g., reweighing, adversarial debiasing) could be used to
detect disparities in resource distribution and access to
EBPs across demographic groups. Findings coulc be tri-
angulated with fidelity scores and intervention outcomes
and could be used to validate equity concerns raised by
the community coalitions involved in CER.

Real-time

Equity dashboards integrate MOUD uptake, naloxone
distribution, and demographic data could be used to
reveal disparities by race, geography, or implementa-
tion wave. NLP techniques analyze meeting notes and
community records could be used to identify stigmatiz-
ing narratives. When patterns of inequity are detected,
implementers could initiate mid-course corrections, such
as revising outreach strategies or materials to better serve
research participants from marginalized groups.

Implementation and sustainability infrastructure
Retrospective

SDM and ABM could be used to simulate how staffing
ratios, TA intensity, and rollout timing influence imple-
mentation fidelity and sustainability. AI could also be
used to identify fidelity gaps and quality concerns by ana-
lyzing meeting transcripts and TA documentation across
implementation phases.

Real-time

Real-time SDM and ABM simulations could incorpo-
rate live data streams including fidelity logs, TA logs, and
implementation milestones to identify how much (e.g.,
the ‘dose’) EBPs are needed to achieve study outcomes
and forecast risks such as leadership turnover or rollout
delays. These projections could support adaptive work-
flow planning, burnout mitigation, and long-term sus-
tainability optimization.

External environment

Retrospective

NLP could be applied to policy documents, news articles,
and other public-facing sources to assess topic framing,
sentiment shifts, and media narratives over time. These
analyses could be linked to external discourse trends and
implementation outcomes, providing insight into how
policy and media shaped local decision-making.
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Real-time

Temporal NLP models and change-point detection algo-
rithms could be used to continuously monitor media
coverage and policy developments. Weekly Al-generated
summaries could alert coalitions to external disruptions
(e.g., new legislation, health crises), helping them adapt
strategies and align messaging in real-time to maintain
community relevance.

Ethical assessment and evaluation

Retrospective

Large Language Models (LLMs) such as GPT-4 could
be used to synthesize ethical themes emerging from
coalition discussions and community feedback. Pri-
vacy-preserving NLP tools (e.g., differential privacy,
semantic-preserving redaction) could be used to detect
sensitive content, underreported harms, and power
imbalances. These outputs could be benchmarked against
manual ethical assessments to evaluate completeness and
fidelity.

Real-time

LLMs and fairness metrics (e.g., demographic parity,
disparate impact) could be used to analyze interviews,
feedback forms, and Community Advisory Board (CAB)
records in real-time. NLP-based bias and anonymiza-
tion tools could be used to flag ethical risks such as
group underrepresentation or procedural injustice trig-
gering alerts for implementers to address concerns,
strengthen trust, and reinforce ethical safeguards during
implementation.

Methodological limitations for retrospective application

While the PRISM-Capabilities model offers a valuable
framework for evaluating Al-enabled CER, retrospec-
tive application introduces inherent limitations such as
causal inference, adaptive learning, and real-time deci-
sion-making. Methodological limitations in the retro-
spective application of the PRISM-Capabilities model for
Al to HCS includes reliance on proxy variables, temporal
mismatches, static modeling assumptions, and potential
unmeasured confounding. To address these, we propose
mitigation strategies mapped to the components of the
PRISM-Capabilities model. Mitigation strategies can
include triangulating data from interviews, TA logs, and
coalition meeting transcripts to reconstruct site-specific
timelines and align findings with community context
(Characteristics of Implementers & Recipients). Proxy
variables may be validated via human coding and trans-
former-based NLP models (e.g., BERT) for sentiment
analysis, enhancing construct validity and ethical coher-
ence (Characteristics of Implementers & Recipients;
Ethical Assessment and Evaluation). Speaker diarization
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tools like pyannote-audio could segment recordings by
speaker, clarifying engagement patterns and decision
roles (Optimizing Engagement). Linking external data-
sets and completing sensitivity analyses could addressing
unmeasured confounding (External Environment, Equity
Assessment & Risk Management). Equity gaps may be
surfaced through audit trails, subgroup analysis, and
community-partner-led feedback loops (Equity Assess-
ment & Risk Management; Ethical Assessment and Eval-
uation). We will assess the model’s effectiveness using
criteria such as alignment with historical records, Al pre-
diction accuracy (e.g., precision-recall), stakeholder vali-
dation of findings, and actionable insights that improve
future implementation outcomes. Collectively, these
strategies enhance transparency, support validation,
and offer practical insights for improving community-
engaged implementation science through responsible,
retrospective Al integration.

Addressing the potential technical limitations of Al

To address core limitations of Al, the PRISM-Capabilities
model for Al proposes multiple safeguards. To ensure
ethical and effective Al integration in CER, the PRISM-
Capabilities model addresses hallucinations, explain-
ability, automation trade-offs, and algorithmic bias. RAG
methods, paired with human review, are recommended
to reduce hallucinations in tasks such as transcript sum-
marization [63, 64]. Explainability is enhanced through
SHAP and LIME, which allows researchers and com-
munity partners to visualize and examine how model
predictions are influenced by specific input features [65].
To mitigate algorithmic bias, we propose dataset diver-
sification, subgroup performance evaluation, and par-
ticipatory bias audits in collaboration with community
stakeholders [34, 66]. For policy-related insights, simu-
lation models are co-developed with domain experts to
ensure contextual validity [61]. Finally, the integration of
advanced anonymization techniques, including context-
aware NLP tools, differential privacy [67], and enterprise-
level data security frameworks, can safeguard sensitive
information. Collectively, these strategies ensure that Al
use within the PRISM-Capabilities model remains rigor-
ous, transparent, and aligned with community values.

Discussion

The PRISM-Capabilities Model for Al introduces a
novel, empirically grounded framework for integrating
Al into CER by reimagining Al not simply as a technical
enhancement, but as an ethically governed, co-designed
intervention. This model reconceptualizes Al implemen-
tation through a human-centered, capabilities-based
lens, filling critical gaps in prevailing frameworks like
PRISM [26] and RE-AIM [20]. The PRISM-Capabilities
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model for Al centers participatory decision-making,
interpretive authority, and the ability to contest algorith-
mic outputs as fundamental measures of success, con-
sistent with the Capabilities Approach [22, 27]. These
freedoms are operationalized using Al techniques like
NLP for community sentiment analysis, ML for predic-
tive modeling, and topic modeling (e.g., LDA) to uncover
local priorities in unstructured text. These applications
are currently being deployed in retrospective analyses of
the HCS intervention to validate alignment with com-
munity-defined outcomes and ethical benchmarks [31,
56]. The model’s novelty lies in integrating Al ethics and
participatory governance across all six components of the
PRISM-Capabilities model. For example, NLP is used to
assess trust and inclusivity in engagement efforts, while
ML forecasts the influence of policy environments. Each
use case is co-designed with stakeholders and subject to
iterative human-AlI deliberation cycles, reinforcing com-
munity oversight and decision-making [33, 68]. In sum,
the PRISM-Capabilities Model for Al presents a replica-
ble and actionable structure for the use of Al in CER, bal-
ancing methodological rigor with ethical responsibilities.
It offers both a theoretical and empirical advancement,
meeting urgent calls for Al systems that enhance rather
than constrain human agency and community sover-
eignty in implementation science [19].

Conclusion

The PRISM-Capabilities model for AI accounts for
the complexities of real-world social science problems
and explicitly positions Al tools at bottlenecks faced
by conventional research approaches. Central to this
are human-centered principles that prioritize human-
Al collaboration, allowing for the operationalization of
responsible AI practices. As this marks the initial ver-
sion of our framework, we acknowledge that continuous
refinement and validation of the model retrospectively
and prospectively using real-world CER are essential.
Specifically, there is a need to examine generalizability
and adaptability across diverse socio-cultural, economic,
and geographic contexts. Leveraging data from exist-
ing implementation science research presents a valuable
opportunity to validate the model’s effectiveness. The
extensive dataset generated by HCS offers an exceptional
resource for achieving these goals. To further advance the
model’s development and application, there is a need to
develop and validate standardized metrics for evaluating
the model’s performance in other complex public health
challenges, such as opioid overdose, HIV, and chronic
disease epidemics, in other diverse settings. By imple-
menting these validation and refinement processes, the
PRISM-Capabilities model for Al has the potential to sig-
nificantly advance community-engaged implementation
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science. As with any emerging technology, actual results
and applications may differ, and ongoing evaluation is
necessary to ensure that accuracy, efficacy, and ethical
considerations are maintained. While the PRISM-Capa-
bilities model for Al has significant potential to inform
the use of Al in CER, further research is needed to vali-
date and refine the model.
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