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Abstract 

Background  Community-engaged research (CER) leverages knowledge, insights, and expertise of researchers 
and communities to address complex public health challenges and improve community well-being. CER fosters col-
laboration throughout all research phases, from problem identification and implementation to evaluation. Artificial 
Intelligence (AI) could enhance the collaborative process by improving data collection, analysis, insight, and engage-
ment, while preserving research ethics. By integrating AI into CER, researchers could enhance their capacity to work 
collaboratively with communities, making research more efficient, inclusive, and impactful. However, careful consider-
ation must be given to the ethical and social implications of AI to ensure that it supports the goals of CER. This paper 
introduces the PRISM-Capabilities model for AI to promote a human-centered approach that emphasizes collabora-
tion, transparency, and inclusivity when using AI within CER.

Methods  The PRISM-Capabilities model for AI includes six components to ensure that ethical concerns are 
addressed, trust and transparency are maintained, and communities are equipped to use and understand AI technol-
ogy. This conceptual model is specifically tailored for community-engaged implementation science research, facilitat-
ing close collaboration between researchers and community partners to guide the use of AI throughout. This paper 
also proposes next steps to validate the model using the HEALing Communities Study (HCS), the largest community-
engaged research study to date, which aimed to reduce fatal overdose deaths in 67 highly impacted communities 
in the United States.

Case study  The PRISM-Capabilities model consists of six components: Optimizing engagement of implementers, 
settings, and recipients; characteristics of intervention implementers, settings, and recipients; equity assessment 
and risk management; implementation and sustainability infrastructure; external environment; and ethical assessment 
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and evaluation. Although AI was not initially used during the HCS, we highlight how AI will be leveraged to complete 
post-hoc analyses of each of the six components and validate the PRISM-Capabilities model.

Conclusion  The application of AI to CER relies on human-centered principles that prioritize human-AI collaboration, 
allowing for the operationalization of responsible AI practices. The PRISM-Capabilities model provides a framework 
to account for the complexities of real-world social science problems and explicitly positions AI tools at bottlenecks 
experienced with conventional approaches.

Keywords  AI, Community-engaged, Framework, Methodology, Ethics, Opioid

Contributions to the literature (96/100)
• Highlights how AI could strengthen community-
engaged implementation science research by improv-
ing data processes and engagement, while maintaining 
a collaborative and ethical approach. 

•Introduces the PRISM-Capabilities model for 
AI, which emphasizes practical, ethical, and socially 
responsible research. 

•Provides a plan and checklist for ethically driven AI 
in community implementation research.

•The model offers a potential tool to guide the use 
of AI in future implementation science studies and 
validates the model using the HEALing Communities 
Study (HCS), to provide robust real-world context, 
strengthening the model’s applicability and relevance 
in addressing public health issues through implemen-
tation science research.

Introduction
Artificial intelligence (AI) is transforming social science 
research by enabling large-scale data analysis, simulation 
of complex systems, and new understanding of human 
behavior [1]. Initially limited to automating data pro-
cesses [1], AI has since advanced social science by sup-
porting sentiment analysis, predictive modeling, and 
pattern recognition [2, 3], thereby expanding the reach, 
precision and power of research [4]. Early AI applica-
tions in social science were often top-down, relying on 
existing datasets and excluding community perspectives, 
which led to algorithmic bias and lack of cultural nuance 
[5–7]. In response, social science researchers have 
adopted participatory approaches in AI that prioritize 
community co-design, transparency, and ethical over-
sight [1, 8, 9]. Parthasarathy and Katzman (2024) empha-
size that integrating marginalized communities into AI 
design not only improves equity but aligns with grass-
roots knowledge to address the needs of the community 
[6]. Tools like model auditing and feedback loops now 
bring stakeholders to identify and correct AI bias during 
the research development phase [10]. This participatory 
shift is visible in fields like healthcare and implementa-
tion science, where stakeholders shape the use of AI in 

diagnostic technology tools [11–14]. For instance, in dia-
betes research, predictive models have been developed 
through community input to include variables like food 
insecurity and transportation [15]. In substance use and 
mental health studies, natural language processing (NLP) 
tools co-created with communities have helped identify 
stigma and tailor interventions for different cultural con-
texts [8, 16]. Achieving equitable, contextual and com-
munity-driven use of AI, however, requires community 
engagement frameworks. This includes building shared 
language, decision-making frameworks, and design pro-
cesses that bridge data science, implementation science, 
and lived experiences.

Ultimately, AI’s role is not to automate decision-mak-
ing but to augment human input and judgment, thereby 
enhancing adaptability, reducing implementation fatigue, 
and supporting ethical and sustainable community-
engaged research (CER). By centering human-AI part-
nerships and prioritizing transparency, researchers could 
ensure that AI supports outcomes that are culturally and 
contextually responsive. The literature underscores the 
considerable potential of AI to enhance CER [15, 17], but 
also highlights a significant gap in conceptual models to 
guide the ethical application of AI [18]. This raises the 
need for a conceptual model that emphasizes a human-
centered approach to AI use which minimizes bias in 
each step of CER [19]. In this paper, we introduce the 
PRISM-Capabilities model for AI as a conceptual model 
to guide the integration of AI and CER that is grounded 
in local knowledge and expertise.

Methods
An integrated conceptual model to guide the use of AI 
in community‑engaged implementation science research: 
the PRISM‑Capabilities Model for AI
The PRISM-Capabilities model for AI integrates the 
Practical, Robust Implementation and Sustainability 
Model (PRISM) [20] with the Capabilities Approach [21, 
22] (Fig.  1). When combined, this model addresses his-
torical shortcomings of AI in social science and CER by 
promoting ethical, human-centered collaboration. This 
ensures that research aligns with the values, morals, and 
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needs of the communities being served, so that AI is a 
complement, rather than a replacement to human efforts. 
This approach also fosters participatory processes, shared 
learning, co-design, and co-ownership to ensure that AI-
enabled CER is guided by community voice and lived 
experiences [23–25].

PRISM is an implementation science framework for 
designing, delivering, and evaluating interventions [26], 
that incorporates the RE-AIM (Reach, Effectiveness, 
Adoption, Implementation, Maintenance) conceptual 
model [20]. We selected the PRISM framework because 
it explicitly incorporates organizational characteristics 
(e.g., culture, leadership), external environments (e.g., 
policy, funding) and perspectives of multiple stakeholders 
(patients, providers, administrators, funders), making it 
particularly well-suited for complex, real-world settings, 
and practical for implementation in diverse environ-
ments and at various levels (local community, nationally). 
In addition to implementation outcomes, PRISM focuses 

on sustainability and continuous feedback loops to sup-
port long-term change and ongoing improvement, which 
other implementation science frameworks may overlook. 
The domains of PRISM directly correspond to the types 
of data and decision points where AI methods (such as 
NLP, fairness audits, and simulation modeling) excel by 
enabling continuous learning, multilevel monitoring, and 
rapid feedback. PRISM allows for a holistic assessment of 
implementation efforts, including both process and out-
come measures across multiple levels (patient, provider, 
organization, system) [20, 26]. The PRISM-Capabilities 
model for AI emphasizes iterative feedback and sys-
tems thinking, [29, 30] making PRISM the most suitable 
implementation science framework for use with AI tools. 
Moreover, PRISM guided the HEALing communities 
Study [31], which will be used to illustrate the PRISM-
Capabilities model for AI in this paper.

The Capabilities Approach focuses on the free-
doms and conditions that enable individuals and 

Fig. 1  This figure illustrates the six interconnected and mutually reinforcing components of the PRISM-Capabilities model for AI, as applied 
to community-engaged research (CER)
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communities to achieve their goals [21, 27, 28]. When 
applied to CER, the Capabilities Approach emphasizes 
ethical imperatives rooted in autonomy and human 
dignity [32], which are critical when AI influences 
decisions and outcomes. It underscores the need to 
ground AI in local realities and ensure that individuals 
have a hand in shaping the data and insights that affect 
their communities [22, 28]. It also enhances transpar-
ency and accountability by embedding community 
voices in every phase of AI development and use [33]. 
This"bottom-up"approach elevates community con-
tributions through shared ownership and local knowl-
edge [34]. The PRISM-Capabilities model thus ensures 
that AI solutions are culturally relevant and tailored to 
community priorities, fostering equitable and effective 
outcomes.

As a non-linear model, PRISM-Capabilities supports 
iterative feedback aligned with human-centered design 
(HCD), where rapid cycles of human-AI collaboration 
refine implementation in real time. By incorporating sys-
tems thinking [35, 36], the model addresses the intercon-
nected influences that shape CER outcomes. Co-creation 
and shared goals, such as clarifying the benefits of AI use, 
addressing bias, and transparency are central to this pro-
cess. Ultimately, the model positions community mem-
bers as co-designers, co-analysts, and co-stewards of 
AI-enabled CER.

This paper first  presents an overview of the PRISM-
Capabilities model for AI (Fig.  1).  Next,  this paper uses 
the HEALing Communities Study (HCS), the largest 
implementation science study ever funded to address 
substance use [31], as a retrospective use case to demon-
strate the PRISM-Capabilities model. Although AI was 
not widely available during the implementation phase of 
HCS, it could have enhanced the CER process. This paper 
strengthens the empirical foundation of the PRISM-
Capabilities model for AI by describing post-hoc analy-
ses that will be completed to simulate the real-time utility 
of AI during HCS implementation to fully capitalize on 
the extensive dataset generated by the HCS, while also 
presenting limitations. Finally, we describe the poten-
tial technical limitations of AI such as hallucinations, 
explainability challenges, automation risks and algorith-
mic bias, which could undermine ethical CER implemen-
tation, while also proposing safeguards.

The interconnected components of the PRISM‑Capabilities 
model for human‑AI collaboration in CER
By delineating the model’s six components (Table 1), we 
offer a practical blueprint for translating the conceptual 
model into action. The model supports real-world appli-
cation by detailing specific data types and analytic tech-
niques (e.g., NLP, fairness audits, simulation modeling), 
promoting transparent human-AI collaboration, and 

Table 1  PRISM-capabilities model components for human-AI collaboration in community-engaged research

Purpose Example AI Tools & Methods Example Implementation Questions

Optimizing Engagement
Ensure early, inclusive co-definition of research 
problems with stakeholders; identify engage-
ment gaps and community priorities

NLP (sentiment analysis, topic modeling); ML 
for engagement forecasting

Who are key partners? What engagement gaps 
exist? What early barriers can AI detect?

Characteristics of Implementers, Settings, 
Recipients
Adapt interventions to organizational readiness 
and local context; enable real-time adjustments

NLP (readiness signals); ML (site clustering); 
SHAP, LIME for transparency

What’s the organizational context? How do inter-
ventions align with site-specific needs?

Equity Assessment & Risk Management
Monitor disparities in implementation and out-
comes; ensure real-time fairness auditing

NLP (bias detection); ML (risk prediction, fairness 
audits); dashboards

Are disparities emerging? How do AI tools support 
equitable resource allocation?

Implementation & Sustainability Infrastruc‑
ture
Support long-term planning, assess fidelity, 
and optimize resources

Simulation (system dynamics, agent-based); NLP 
(session analysis); ML (forecasting)

What resources are needed long-term? How can 
drift in intervention fidelity be detected early?

External Environment
Anticipate how policy, organizational, or regula-
tory shifts influence CER success

NLP (policy analysis); ML (trend detection); 
geospatial mapping

How do structural factors support or limit imple-
mentation? What external threats exist?

Ethical Assessment & Evaluation
Build procedural justice, transparency, 
and accountability into all AI-supported activi-
ties

NLP (ethical flagging); SHAP, LIME; participatory 
audit tools

Are AI decisions explainable? How are community 
values integrated?
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surfacing key questions for participatory co-design. The 
guide is tailored to help research teams, AI experts, and 
community partners use AI in ways that enhance trust, 
contextual responsiveness, and ethical accountability 
throughout all phases of CER implementation.

Optimizing engagement of implementers, settings, 
and recipients
The PRISM-Capabilities model for AI begins with gather-
ing data from key implementers, organizational leaders, 
community members, individuals with lived experience, 
and policymakers to identify challenges and priorities to 
improve intervention acceptability. Community engage-
ment at this stage aims to co-define the research 
question, identify barriers, and ensure that diverse stake-
holder voices are included from the outset of CER imple-
mentation. Human-AI collaboration in this phase could 
generate real-time insights using NLP, sentiment analysis 
and other AI tools when drawing from qualitative data 
to support more inclusive and effective implementation. 
Topic modeling could also be applied to meeting tran-
scripts to identify recurring themes in engagement and 
trust, helping to tailor implementation strategies to local 
needs.

AI tools could help answer questions like: Are there 
emotional tone, morale, or participation gaps across stake-
holder groups? Who are the key community partners? 
(identified via NLP in meeting transcripts)? What is the 
state of organizational infrastructure (assessed through 
partner feedback and documents)? How is the intervention 
perceived (measured through sentiment analysis)? What 
prior experiences shape implementer perspectives? What 
external factors, policy, funding, or local support might 
be barriers to implementation? What skills and training 
gaps exist among implementers (identified through perfor-
mance records)? When answering such questions, topic 
modeling could uncover recurring themes to enhance an 
understanding of implementation challenges. Addition-
ally, ML methods could support responsive and equi-
table decision-making by synthesizing diverse datasets 
such as demographic trends, local health outcomes, and 
economic indicators to construct a dynamic, data-driven 
model of the implementation context.

Characteristics of implementers, settings, and recipients
This component considers the skills, capacities, readi-
ness, and contextual factors of the individuals and 
systems involved in CER implementation to ensure align-
ment with local needs, contexts and available resources. 
This is achieved by incorporating feedback from all 
stakeholders early in the CER process and enabling con-
tinuous refinement of core components and implementa-
tion strategies. To ensure contextual fit, all stakeholders 

must assess whether interventions align with commu-
nity needs, values, and available resources. SDM could 
be used to visualize variations across sites using NLP to 
enhance the process of understanding site-level differ-
ences in organizational readiness and capacity. SDM data 
sources may include in-depth interviews, focus group 
discussions, administrative records, and surveys. Real-
time sentiment analysis could support timely adjust-
ments by addressing questions like: How are participants 
responding to the intervention? Or What changes could 
increase impact?

Importantly, readiness indicators and other features 
used in AI models should be co-developed with com-
munity input. Tools like SHapley Additive exPlanations 
(SHAP) or Local Interpretable Model-agnostic Explana-
tions (LIME) could help make AI outputs interpretable 
and actionable [37]. By quantifying how much each fea-
ture contributes to an individual prediction, SHAP and 
LIME enable transparent, consistent, and locally accurate 
explanations of complex ML models and could be used 
for auditing AI models, identifying bias, or building trust 
with stakeholders. AI models could also automate routine 
tasks and improve decision-making, and engagement.

Equity assessment and risk management
The next component identifies potential disparities in 
implementation and outcomes and ensures inclusive 
access to benefits across diverse populations. When used 
in CER, AI could enhance and ensure equity assessment 
and risk management by continuously analyzing perfor-
mance data, detecting trends in real time and supporting 
equitable intervention distribution [38, 39]. These tools 
could uncover disparities in participation, access and 
outcomes, particularly when implemented in collabora-
tion with communities.

NLP methods, including supervised classification and 
unsupervised clustering, analyze meeting transcripts, 
interviews, and narratives to detect linguistic biases, 
exclusionary framing, and disparities in how underrep-
resented groups are being discussed by various stake-
holders. These analyses could help identify patterns of 
disparities and disproportionate burden, prompting 
timely adaptations. AI could also integrate demographic 
and other contextual data to guide equitable resource 
allocation and performance using indicators such as race, 
income, geography, or criminal-legal system involvement 
[40]. AI dashboards and fairness audits that are stratified 
by these variables could be used to visualize emerging 
inequities and track subgroup disparities to shape inclu-
sive and effective interventions [40, 41].

Ultimately, equity assessment in this model is not 
just about data accuracy, but also about participatory 
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oversight and actionable insights that reduce harm for 
all populations. To ensure equity metrics are transpar-
ent, accountable and meaningful, communities must co-
define risks by selecting which disparities to track, how 
to interpret subgroup errors, validate algorithmic out-
puts, and what thresholds warrant action. Fairness-aware 
modeling (e.g., demographic parity checks and disparate 
impact audits) must be implemented as a continuous 
auditing mechanism that is governed collaboratively and 
continuously, rather than as a one-time evaluation. This 
transforms equity assessments into a dynamic, corrective 
mechanism that moves beyond static disparity reporting 
to enable actionable, real-time mitigation. Furthermore, 
researchers could develop AI-driven dashboards to allow 
for transparency and data-informed outputs to enable 
CER implementation teams to respond quickly.

Implementation and sustainability infrastructure
The PRISM-Capabilities model for AI highlights the 
importance of contextual factors in building and sustain-
ing implementation systems [27, 42]. This component 
of the model evaluates organizational systems, resource 
flows, training, and operational supports to ensure effec-
tive intervention delivery and sustainability. It provides 
a framework for optimizing workflows, training, and 
resource planning through simulation and forecasting 
tools that incorporate diverse stakeholder inputs [43].

AI tools such as ML models, agent-based modeling 
(ABM) and system dynamics modeling (SDM) could 
be used with community input to simulate or estimate 
needs such as resources, staffing, fidelity, or commu-
nity engagement necessary for achieving the desired 
outcomes [44, 45]. This allows for informed decision-
making, intervention planning [46], and maintenance of 
standards throughout the implementation process [19]. 
AI tools could also support implementation fidelity and 
sustainability by analyzing multiple data sources includ-
ing meeting transcripts, session recordings, and techni-
cal assistance (TA) logs detailing the type of support 
offered, frequency of interactions, and specific imple-
mentation challenges addressed to assess intervention 
fidelity and community responsiveness to the interven-
tion. For example, NLP could identify procedural drift or 
flag low engagement by analyzing language use, while ML 
could integrate fidelity reports with demographic data 
to detect where implementation may falter [22]. Impor-
tantly, researchers and community members should co-
specify thresholds for acceptability to enable AI models 
to reflect shared expectations around fidelity and perfor-
mance and empirically test these thresholds and the cor-
responding responses. This iterative testing is critical to 
developing data-informed decision rules when observed 
variables change in a community; and determine the type 

of response that is warranted and appropriate thresholds. 
Applying this strategy in studies like the HCS would allow 
communities and researchers to calibrate actions based 
on evidence, strengthen planning, training, and mid-
course corrections through AI-informed learning cycles. 
Moreover, AI tools could detect early warning signs of 
resource strain (e.g., reduced meeting participation or 
burnout indicators) and simulate future implementation 
needs under various scenarios to support sustainability 
planning. ABM and SDM could test how variations in 
coalition leadership, staffing, or funding affect implemen-
tation success over time [19], and AI-driven forecasting 
tools ensure local relevance and accuracy, when devel-
oped with stakeholder input.

External environment
The PRISM-Capabilities model for AI incorporates how 
external factors such as policies, regulations, community 
assets and broader socio-political factors shape the suc-
cess and sustainability of CER [20, 27]. PRISM focuses on 
how systemic structures (e.g., laws, reimbursement sys-
tems, resource availability) affect intervention delivery 
and sustainability, while the Capabilities Approach exam-
ines how those same forces constrain or enable individu-
als’ abilities to achieve desired outcomes. Together, they 
provide a complementary lens to assess how broader 
conditions impact equity and feasibility in CER. AI 
tools could enhance this by processing large volumes of 
unstructured and structured data. NLP could be used to 
analyze policy documents, clinical guidelines, legislative 
records, and media content to extract relevant shifts in 
regulation, reimbursement, or political sentiment that 
may affect intervention implementation. Geospatial 
mapping could help identify gaps in local infrastructure 
(e.g., healthcare or educational facilities), while image-
recognition tools could assess geographic disparities in 
service delivery [47, 48]. However, all AI-generated inter-
pretations of policy or resource data should be validated 
through community and expert review, particularly in 
contexts with contested or historically exclusionary poli-
cies. Ultimately, the value of AI lies not only in moni-
toring regulatory, political or economic shifts, but in 
ensuring such insights are interpreted collaboratively and 
used to design ethically and practically grounded inter-
ventions that address real-world problems.

Ethical assessment and evaluation
Researchers conducting CER must prioritize ethical AI 
use across all six components of the PRISM-Capabilities 
model to ensure inclusivity, equity, safety, data privacy, 
and accountability across all phases of CER. In this area, 
NLP could analyze large volumes of feedback (e.g., out-
come data, meeting transcripts, social media sentiment 
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etc.) to identify ethical concerns or outcomes that part-
ners, participants, and community members may miss 
during human review. For instance, AI algorithms could 
detect early-stage implementation biases such as unequal 
access across sociodemographic groups and generate 
ethical impact reports to guide decision-making.

While AI tools are powerful for synthesis, they must 
not replace human judgment. Oversight is essential to 
contextualize AI outputs, especially given the complexity 
of behavior, cultural differences, and structural inequities 
across communities. Including data from diverse data-
sets (e.g., policies, administrative data, meeting minutes) 
enhances ethically grounded interpretations. In addition, 
researchers should use clear, well-contextualized prompts 
and integrate fact-checking to reduce hallucinations (i.e., 
inaccuracies that arise from overgeneralized or mis-
aligned patterns in the training dataset) in AI-generated 
content [49, 50]. Though not eliminated entirely, halluci-
nations could be minimized through retrieval-augmented 
generation (RAG), in which AI retrieves real information 
from an external sources (meeting minutes, survey data, 
focus group discussions, etc.) while generating its answer 
[51, 52]. In this process, community members could be 
actively involved when reviewing AI-generated outputs 
for accuracy. Furthermore, AI tools must be deployed 
alongside strong data protection measures. This includes 
informed consent, clear explanation of AI’s role, com-
pliance with ethical and legal standards (e.g., HIPAA, 
GDPR), and enterprise-level safeguards like secure plat-
forms, encryption, role-based access, and audit logs. 
Additional protections such as text and voice anonymi-
zation and differential privacy techniques are also crucial 
when working with sensitive data. Researchers should 
systematically evaluate the intended and unintended con-
sequences of AI-supported decisions as they evolve over 
time, integrating this into real-time monitoring. Sociode-
mographic overlays should be used in conjunction with 

feedback and outcome data to identify disparities that 
may not be visible in raw performance metrics. Ethical 
safeguards must include embedded de-identification pro-
tocols, differential privacy layers, and automated audit 
trail systems within AI pipelines to ensure procedural 
justice throughout the data lifecycle.

Explicit mechanisms should also be in place to uphold 
transparency in AI decision-making, supported by real-
time explainability features. Algorithmic bias stemming 
from data and representational imbalances is also a criti-
cal issue, and AI models trained on biased data may pro-
duce harmful outcomes. To mitigate this, researchers 
must use diverse datasets, conduct fairness audits, and 
implement interpretable models. Explainability tools 
such as SHAP or LIME could help explain how a ML 
model made a specific prediction, especially when the 
model itself is complex and not directly interpretable 
[37]. This could clarify how decisions are made and help 
stakeholders verify their logic. Participatory AI-checking 
ensures diverse voices, including researchers, imple-
menters, and people with lived experience are engaged 
throughout CER. Finally, researchers should also support 
the development of open-source explainability tools and 
community-governed AI systems [53].

To ensure ethical and equitable CER, we propose that 
all stakeholders involved in CER adopt an ethical check-
list guided by the six phases of the PRISM- Capabilities 
model for AI (Table  2). This checklist helps establish a 
foundation for ethical accountability, fosters trust, and 
promoting responsible AI integration during CER.

Machine learning/AI tools considered 
in the PRISM‑capabilities model
Having outlined the six components of the PRISM-Capa-
bilities model, we now turn to the specific AI and ML 
tools that enable real-world application. To move beyond 
conceptual guidance, the following section (Table  3) 

Table 2  Checklist to guide the ethical use of AI in CER

Checklist item Example Questions

Safeguarding data confidentiality What cybersecurity measures are in place to safeguard data?

Compliance with regulations and policies Has IRB approval for the study been granted?

Promoting equity and fairness by including diverse communities and consid-
ering their unique characteristics

Are members of the community included on the research team?
Is equity included in the research goals?

Maintaining data integrity to ensure accuracy and reliability Are the proper measures in place to ensure data is properly handled?

Adopting and implementing privacy protocols for transparent data use What privacy protocols have been developed to protect data and con-
fidentiality?

Implementing robust data security measures How is data being stored and handled?

Ensuring transparency in AI processes and outcomes What dissemination practices will the research group use throughout?

Building trust and confidence by aligning AI applications with community 
expectations

How are the researchers ensuring community voices are heard?
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operationalizes each of the six components with concrete 
AI methods, typical data sources, strengths and limita-
tions, and human-AI collaboration points. This mapping 
is critical for researchers seeking to apply the model in 
practice, particularly in studies like HCS [31].

NLP and sentiment analysis could rapidly synthesize 
qualitative feedback, while ML models could predict pat-
terns and disparities, supporting equity and engagement 
goals. Generative AI and topic modeling could acceler-
ate reporting and thematic analysis, but require human 
oversight to maintain accuracy and contextual sensitivity. 
Simulation and forecasting models could assist in sus-
tainability planning, while explainable AI (XAI) methods 
and privacy-preserving technologies strengthen trans-
parency, ethical oversight, and data protection. Across 
all applications, human-AI collaboration remains foun-
dational, ensuring AI complements rather than replaces 
community knowledge and decision-making. This con-
crete synthesis moves beyond speculation to offer an 
actionable, ethically grounded roadmap for AI integra-
tion into CER that is fully aligned with the PRISM-Capa-
bilities model for AI.

Case Study: a practical application 
of the PRISM‑Capabilities model in the HEALing 
Communities Study (HCS) 
HCS was the largest implementation science research 
effort to date to address fatal overdose deaths in the US. 
Guided by the PRISM framework [20, 31, 54, 55], HCS 
was a multisite, community-level, cluster-randomized con-
trolled trial designed to evaluate the effectiveness of the 
Communities that HEAL (CTH) intervention in reducing 
opioid-related overdose deaths in highly affected commu-
nities [56]. The trial was guided by the Reach, Effectiveness, 
Adoption, Implementation, and Maintenance (RE-AIM) 
framework and PRISM [20]. A total of 67 communities in 
Kentucky, Massachusetts, New York, and Ohio were ran-
domly assigned to either the intervention arm (n = 34 com-
munities) or the wait-list control arm (n = 33 communities), 
stratified by state. The study was approved by Advarra, an 
independent research review organization, which served 
as the single Institutional Review Board. Oversight was 
provided by a Data and Safety Monitoring Board (DSMB) 
chartered by the National Institute on Drug Abuse (NIDA) 
[31, 56, 57].

The CTH intervention unfolded in six phases (Fig.  2), 
emphasizing community engagement, evidence-based 
practices (EBPs), and data-driven decision-making by com-
munity coalitions who were aided by visualizations made 
available via community-specific data dashboards [58, 59]. 
EBPs included increased naloxone distribution, expanded 
access to medications for opioid use disorder (MOUD), 
improved MOUD linkage and retention, promotion of safer 

opioid prescribing and dispensing, and communication 
campaigns to drive demand for EBPs and reduce stigma 
toward MOUD and people who use drugs [60].

The HCS utilized a vast amount of data from multiple 
sources (Table  4). To ensure fidelity to the CTH inter-
vention, researchers implemented rigorous monitoring 
protocols, including monthly assessments of EBPs deliv-
ered in communities. In addition to qualitative data, HCS 
collected extensive administrative and epidemiological 
data.. Some study sites used advanced modeling tech-
niques to further refine predictive capabilities, such as 
SDM to capture the interconnected nature of the opioid 
crisis and intervention points to inform the deployment 
of EBPs with community coalitions [61]. This approach 
allowed for a more holistic view of the system-wide 
impacts of implemented EBPs. The New York sites also 
utilized ABM to simulate individual behaviors and inter-
actions within the community to predict how much EBPs 
needed to increase to achieve the study outcomes [62]. 
The integration of these diverse data sources and analyti-
cal methods created a robust framework for evaluating 
the effectiveness of the CTH intervention. By combining 
qualitative insights, quantitative metrics, and advanced 
modeling techniques, HCS was able to provide a compre-
hensive assessment of community-level efforts to imple-
ment EBPs and reduce opioid overdose deaths.

Potential empirical validation and scenarios 
for retrospective and real‑world applications 
of the PRISM‑capabilities model for AI using HCS
While the PRISM-Capabilities Model for AI was not used 
during HCS implementation, we offer concrete opera-
tionalization of the six components through retrospec-
tive and real-time applications of AI. Table 5 details how 
AI tools could be used to retrospectively analyze existing 
HCS data and simulates real-time utility in CER to vali-
date the model. Table 1 also maps the six model compo-
nents to corresponding AI tools and analytic objectives 
(e.g., sentiment shifts, engagement trajectories, policy 
simulations). Together, these tables illustrate the mod-
el’s empirical utility and transition it from theoretical 
abstraction to a data-driven implementation roadmap.

Retrospective and real‑time validation using HCS data
To operationalize the PRISM-Capabilities model for AI 
in dynamic, CER, we are conducting a multi-pronged, 
post-hoc analysis using HCS data to evaluate the prac-
tical utility of the PRISM-Capabilities model for AI and 
empirically test each of its six components. We describe 
potential retrospective analyses and real-time AI tools 
across all six components to enable responsive imple-
mentation, ethical oversight, and iterative adaptation in 
CER below. Our aim is to assess whether state-of-the-art 
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AI techniques can replicate the barriers, facilitators, and 
outcomes observed during the original HCS implemen-
tation [69]. These analyses leverage both structured and 
unstructured data, collected from 16 New York State 
communities (Table 4).

Optimizing engagement
Retrospective
As described in Table 5, NLP methods such as BERTopic 
and Latent Dirichlet Allocation (LDA) could be applied 
to coalition transcripts and interviews to uncover evolv-
ing themes when engaging community service provid-
ers for the deployment of EPBs. Sentiment analysis tools 
(e.g., Vader, TextBlob, RoBERTa-based models) can track 
emotional tone related to stigma, optimism, and resist-
ance. Sequential pattern analysis could be used to map 
the alignment between coalition goals and researcher 

priorities, cross-referenced with fidelity data and TA logs 
to assess community coalitions engagement trends. Fur-
thermore, sequential pattern analysis could be used to 
understand the barriers and facilitators community ser-
vice providers and other stakeholders faced when identi-
fying and deploying EPBs.

Real‑time
Transformer-based NLP models (e.g., RoBERTa) and 
real-time topic modeling could monitor ongoing tran-
scripts, TA logs, and coalition involvement in the deploy-
ment of EBPs. These tools could be used to generate 
sentiment dashboards, flag disengagement, track par-
ticipation equity, and detect signs of community fatigue. 
Automated alerts could be used to support timely facili-
tation adjustments and re-engagement of underrepre-
sented stakeholders and coalitions members.

Fig. 2  The phased approach for implementation of the Communities that HEAL (CTH) intervention of the HCS to reduce fatal overdose (Martinez, 
L.S., et al., Community engagement to implement evidence-based practices in the HEALing communities study. Drug and alcohol dependence, 2020. 217: 
p. 108,326.)
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Characteristics of implementers, settings, and recipients
Retrospective
ML classifiers (e.g., Random Forests, XGBoost) could be 
trained on structured data from readiness assessments, 
staffing patterns, and coalition characteristics to predict 
effective EBP implementation. Clustering algorithms 
(e.g., k-means, DBSCAN) could be used to identify dis-
tinct community typologies that may benefit from tai-
lored implementation support.

Real‑time
ML classifiers and NLP analytics could be applied to 
readiness data, interviews, and implementation records 
could be used to detect contextual misalignments (e.g., 
low local capacity, cultural misalignment). These tools 
could be used to guide real-time adaptation by matching 
interventions to community strengths, flagging imple-
mentation risks, and dynamically tailoring TA logs and 
resource allocation.

Table 4  Sources of data used in the New York State site of the HCS

a Centers for Disease Control and Prevention, CDC Wonder. https://​wonder.​cdc.​gov/​single-​race-​popul​ation.​html
b Centers for Disease Control and Prevention, CDC Wonder. https://​wonder.​cdc.​gov/​bridg​ed-​race-​popul​ation.​html
c NYS Department of Health, New York State County Opioid Quarterly Reports
d NYS Department of Health, PMP/I-STOP - Prescription Monitoring Program- Internet System for Tracking Over-Prescribing

Data Source Objective

250 + coalition meeting transcripts and minutes Captured deliberations on best strategies for EBP deployment as commu-
nities implemented the Communities That HEAL intervention

300 + in-depth interviews Coalition members, community partners, policymakers, PWUD, PWLE

Focus groups data across 16 NY communities Coalitions’ perspectives on challenges related to the barriers to imple-
menting the deployment of evidence-based practices and on systems 
work

Data on the number and type of EBPs (including stigma reduction) Challenges and successes of EBP deployment, what communities 
and populations reached

Fidelity Measures Attendee information, subcommittee checklist, coalition meeting informa-
tion and feedback

Opioid-overdose Reduction Continuum of Care Approach (ORCCA) Tracker Tracks implementation evidence-based practices

Asset Classification Landscape analysis of participating communities

Community Engagement Meeting data, coalition meeting information, attendee survey

Training and Technical Assistance Tracker Tracks meetings used to educate key partners

Surveys Survey data related to criminal justice, HCS coalition members, HCS com-
munity advisory board members, toxicology, communications campaign

Costing Community advisory board, communications campaign, staff activity, 
miscellaneous activity costs

U.S. Census Bureau’s Single-Race Resident Population Estimates Data 
and NCHS Bridged-Race Resident Population Estimates Dataa

County-defined community population denominator, all ages

2014–2018 5-Year ACS Datab Zip code-defined community population denominator, all ages

New York State Department of Health Bureau of Vital Recordsc Number of opioid overdose deaths among HCS community residents

New York State Hospital Inpatient Billing Claims and Emergency Depart-
ment Billing Claims Data

Number of nonfatal drug poisoning hospitalizations and ED visits

New York State Department of Health, Office of Health Insurance Pro-
grams, Medicaid Claims Data

Number of individuals with opioid dependence or abuse; number 
of individuals receiving naltrexone; individuals with OUD receiving MOUD; 
individuals with OUD receiving linkages to care

New York State Prescription Drug Monitoring Programd Number of individuals receiving buprenorphine products that are FDA 
approved for treatment of OUD

New York State Emergency Medical Services Runs Data Number of EMS events involving naloxone administration

New York State Office of Drug User Health Number of naloxone units distributed in community

Syndromic Surveillance Data Number of opioid-related overdoses treated in the ED

Drug Enforcement Administration Data Number of providers with DATA 2000 waiver

https://wonder.cdc.gov/single-race-population.html
https://wonder.cdc.gov/bridged-race-population.html
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Equity assessment and risk management
Retrospective
NLP tools could be used to surface patterns of under-
representation, exclusionary language, and implicit bias 
in coalition discourse. Fairness-aware ML algorithms 
(e.g., reweighing, adversarial debiasing) could be used to 
detect disparities in resource distribution and access to 
EBPs across demographic groups. Findings coulc be tri-
angulated with fidelity scores and intervention outcomes 
and could be used to validate equity concerns raised by 
the community coalitions involved in CER.

Real‑time
Equity dashboards integrate MOUD uptake, naloxone 
distribution, and demographic data could be used to 
reveal disparities by race, geography, or implementa-
tion wave. NLP techniques analyze meeting notes and 
community records could be used to identify stigmatiz-
ing narratives. When patterns of inequity are detected, 
implementers could initiate mid-course corrections, such 
as revising outreach strategies or materials to better serve 
research participants from marginalized groups.

Implementation and sustainability infrastructure
Retrospective
SDM and ABM could be used to simulate how staffing 
ratios, TA intensity, and rollout timing influence imple-
mentation fidelity and sustainability. AI could also be 
used to identify fidelity gaps and quality concerns by ana-
lyzing meeting transcripts and TA documentation across 
implementation phases.

Real‑time
Real-time SDM and ABM simulations could incorpo-
rate live data streams including fidelity logs, TA logs, and 
implementation milestones to identify how much (e.g., 
the ‘dose’) EBPs are needed to achieve study outcomes 
and forecast risks such as leadership turnover or rollout 
delays. These projections could support adaptive work-
flow planning, burnout mitigation, and long-term sus-
tainability optimization.

External environment
Retrospective
NLP could be applied to policy documents, news articles, 
and other public-facing sources to assess topic framing, 
sentiment shifts, and media narratives over time. These 
analyses could be linked to external discourse trends and 
implementation outcomes, providing insight into how 
policy and media shaped local decision-making.

Real‑time
Temporal NLP models and change-point detection algo-
rithms could be used to continuously monitor media 
coverage and policy developments. Weekly AI-generated 
summaries could alert coalitions to external disruptions 
(e.g., new legislation, health crises), helping them adapt 
strategies and align messaging in real-time to maintain 
community relevance.

Ethical assessment and evaluation
Retrospective
Large Language Models (LLMs) such as GPT-4 could 
be used to synthesize ethical themes emerging from 
coalition discussions and community feedback. Pri-
vacy-preserving NLP tools (e.g., differential privacy, 
semantic-preserving redaction) could be used to detect 
sensitive content, underreported harms, and power 
imbalances. These outputs could be benchmarked against 
manual ethical assessments to evaluate completeness and 
fidelity.

Real‑time
LLMs and fairness metrics (e.g., demographic parity, 
disparate impact) could be used to analyze interviews, 
feedback forms, and Community Advisory Board (CAB) 
records in real-time. NLP-based bias and anonymiza-
tion tools could be used to flag ethical risks such as 
group underrepresentation or procedural injustice trig-
gering alerts for implementers to address concerns, 
strengthen trust, and reinforce ethical safeguards during 
implementation.

Methodological limitations for retrospective application
While the PRISM-Capabilities model offers a valuable 
framework for evaluating AI-enabled CER, retrospec-
tive application introduces inherent limitations such as 
causal inference, adaptive learning, and real-time deci-
sion-making. Methodological limitations in the retro-
spective application of the PRISM-Capabilities model for 
AI to HCS includes reliance on proxy variables, temporal 
mismatches, static modeling assumptions, and potential 
unmeasured confounding. To address these, we propose 
mitigation strategies mapped to the components of the 
PRISM-Capabilities model. Mitigation strategies can 
include triangulating data from interviews, TA logs, and 
coalition meeting transcripts to reconstruct site-specific 
timelines and align findings with community context 
(Characteristics of Implementers & Recipients). Proxy 
variables may be validated via human coding and trans-
former-based NLP models (e.g., BERT) for sentiment 
analysis, enhancing construct validity and ethical coher-
ence (Characteristics of Implementers & Recipients; 
Ethical Assessment and Evaluation). Speaker diarization 
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tools like pyannote-audio could segment recordings by 
speaker, clarifying engagement patterns and decision 
roles (Optimizing Engagement). Linking external data-
sets and completing sensitivity analyses could addressing 
unmeasured confounding (External Environment, Equity 
Assessment & Risk Management). Equity gaps may be 
surfaced through audit trails, subgroup analysis, and 
community-partner-led feedback loops (Equity Assess-
ment & Risk Management; Ethical Assessment and Eval-
uation). We will assess the model’s effectiveness using 
criteria such as alignment with historical records, AI pre-
diction accuracy (e.g., precision-recall), stakeholder vali-
dation of findings, and actionable insights that improve 
future implementation outcomes. Collectively, these 
strategies enhance transparency, support validation, 
and offer practical insights for improving community-
engaged implementation science through responsible, 
retrospective AI integration.

Addressing the potential technical limitations of AI
To address core limitations of AI, the PRISM-Capabilities 
model for AI proposes multiple safeguards. To ensure 
ethical and effective AI integration in CER, the PRISM-
Capabilities model addresses hallucinations, explain-
ability, automation trade-offs, and algorithmic bias. RAG 
methods, paired with human review, are recommended 
to reduce hallucinations in tasks such as transcript sum-
marization [63, 64]. Explainability is enhanced through 
SHAP and LIME, which allows researchers and com-
munity partners to visualize and examine how model 
predictions are influenced by specific input features [65]. 
To mitigate algorithmic bias, we propose dataset diver-
sification, subgroup performance evaluation, and par-
ticipatory bias audits in collaboration with community 
stakeholders [34, 66]. For policy-related insights, simu-
lation models are co-developed with domain experts to 
ensure contextual validity [61]. Finally, the integration of 
advanced anonymization techniques, including context-
aware NLP tools, differential privacy [67], and enterprise-
level data security frameworks, can safeguard sensitive 
information. Collectively, these strategies ensure that AI 
use within the PRISM-Capabilities model remains rigor-
ous, transparent, and aligned with community values.

Discussion
The PRISM-Capabilities Model for AI introduces a 
novel, empirically grounded framework for integrating 
AI into CER by reimagining AI not simply as a technical 
enhancement, but as an ethically governed, co-designed 
intervention. This model reconceptualizes AI implemen-
tation through a human-centered, capabilities-based 
lens, filling critical gaps in prevailing frameworks like 
PRISM [26] and RE-AIM [20]. The PRISM-Capabilities 

model for AI centers participatory decision-making, 
interpretive authority, and the ability to contest algorith-
mic outputs as fundamental measures of success, con-
sistent with the Capabilities Approach [22, 27]. These 
freedoms are operationalized using AI techniques like 
NLP for community sentiment analysis, ML for predic-
tive modeling, and topic modeling (e.g., LDA) to uncover 
local priorities in unstructured text. These applications 
are currently being deployed in retrospective analyses of 
the HCS intervention to validate alignment with com-
munity-defined outcomes and ethical benchmarks [31, 
56]. The model’s novelty lies in integrating AI ethics and 
participatory governance across all six components of the 
PRISM-Capabilities model. For example, NLP is used to 
assess trust and inclusivity in engagement efforts, while 
ML forecasts the influence of policy environments. Each 
use case is co-designed with stakeholders and subject to 
iterative human-AI deliberation cycles, reinforcing com-
munity oversight and decision-making [33, 68]. In sum, 
the PRISM-Capabilities Model for AI presents a replica-
ble and actionable structure for the use of AI in CER, bal-
ancing methodological rigor with ethical responsibilities. 
It offers both a theoretical and empirical advancement, 
meeting urgent calls for AI systems that enhance rather 
than constrain human agency and community sover-
eignty in implementation science [19].

Conclusion
The PRISM-Capabilities model for AI accounts for 
the complexities of real-world social science problems 
and explicitly positions AI tools at bottlenecks faced 
by conventional research approaches. Central to this 
are human-centered principles that prioritize human-
AI collaboration, allowing for the operationalization of 
responsible AI practices. As this marks the initial ver-
sion of our framework, we acknowledge that continuous 
refinement and validation of the model retrospectively 
and prospectively using real-world CER are essential. 
Specifically, there is a need to examine generalizability 
and adaptability across diverse socio-cultural, economic, 
and geographic contexts. Leveraging data from exist-
ing implementation science research presents a valuable 
opportunity to validate the model’s effectiveness. The 
extensive dataset generated by HCS offers an exceptional 
resource for achieving these goals. To further advance the 
model’s development and application, there is a need to 
develop and validate standardized metrics for evaluating 
the model’s performance in other complex public health 
challenges, such as opioid overdose, HIV, and chronic 
disease epidemics, in other diverse settings. By imple-
menting these validation and refinement processes, the 
PRISM-Capabilities model for AI has the potential to sig-
nificantly advance community-engaged implementation 
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science. As with any emerging technology, actual results 
and applications may differ, and ongoing evaluation is 
necessary to ensure that accuracy, efficacy, and ethical 
considerations are maintained. While the PRISM-Capa-
bilities model for AI has significant potential to inform 
the use of AI in CER, further research is needed to vali-
date and refine the model.
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